Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65.728
Filter
1.
J Drugs Dermatol ; 23(5): e132-e133, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38709690

ABSTRACT

Skin self-examinations play a vital role in skin cancer detection and are often aided by online resources. Available reference photos must display the full spectrum of skin tones so patients may visualize how skin lesions can appear. This study investigated the portrayal of skin tones in skin cancer-related Google Images, discovering a significant underrepresentation of darker skin tones. J Drugs Dermatol. 2024;23(5):e132-e133.     doi:10.36849/JDD.7886e.


Subject(s)
Skin Neoplasms , Skin Pigmentation , Humans , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Photography , Self-Examination/methods , Skin/pathology , Internet , Search Engine
2.
Sci Rep ; 14(1): 10524, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719976

ABSTRACT

Extracellular matrix diseases like fibrosis are elusive to diagnose early on, to avoid complete loss of organ function or even cancer progression, making early diagnosis crucial. Imaging the matrix densities of proteins like collagen in fixed tissue sections with suitable stains and labels is a standard for diagnosis and staging. However, fine changes in matrix density are difficult to realize by conventional histological staining and microscopy as the matrix fibrils are finer than the resolving capacity of these microscopes. The dyes further blur the outline of the matrix and add a background that bottlenecks high-precision early diagnosis of matrix diseases. Here we demonstrate the multiple signal classification method-MUSICAL-otherwise a computational super-resolution microscopy technique to precisely estimate matrix density in fixed tissue sections using fibril autofluorescence with image stacks acquired on a conventional epifluorescence microscope. We validated the diagnostic and staging performance of the method in extracted collagen fibrils, mouse skin during repair, and pre-cancers in human oral mucosa. The method enables early high-precision label-free diagnosis of matrix-associated fibrotic diseases without needing additional infrastructure or rigorous clinical training.


Subject(s)
Microscopy, Fluorescence , Animals , Mice , Humans , Microscopy, Fluorescence/methods , Extracellular Matrix Proteins/metabolism , Optical Imaging/methods , Extracellular Matrix/metabolism , Collagen/metabolism , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Skin/metabolism , Skin/pathology
3.
Skin Res Technol ; 30(5): e13706, 2024 May.
Article in English | MEDLINE | ID: mdl-38721854

ABSTRACT

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Electroporation , Lipidomics , Skin Neoplasms , Skin , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/chemistry , Lipidomics/methods , Biopsy , Skin/pathology , Skin/metabolism , Skin/chemistry , Female , Male , Electroporation/methods , Middle Aged , Aged , Lipids/analysis , Tandem Mass Spectrometry/methods
4.
Sci Rep ; 14(1): 10618, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724594

ABSTRACT

Various kinds of pets have been known to contract the ectoparasite Sarcoptes scabiei. Current acaricides are becoming less effective because of the resistance developed by the mite besides their adverse effects on the general activity and reproductive performance of domestic pets. For this reason, the present study aims to discover a novel and safe approach using silver and gold nanoparticles to fight Sarcoptic mange in rabbits as well as to explain their mechanism of action. 15 pet rabbits with clinical signs of Sarcoptic mange that were confirmed by the microscopic examination were used in our study. All rabbits used in this study were assessed positive for the presence of different developing stages of S. scabiei. Three groups of rabbits (n = 5) were used as follows: group (1) didn't receive any treatment, and group (2 and 3) was treated with either AgNPs or GNPs, respectively. Both nanoparticles were applied daily on the affected skin areas via a dressing and injected subcutaneously once a week for 2 weeks at a dose of 0.5 mg/kg bwt. Our results revealed that all rabbits were severely infested and took a mean score = 3. The skin lesions in rabbits that didn't receive any treatments progressed extensively and took a mean score = of 4. On the other hand, all nanoparticle-treated groups displayed marked improvement in the skin lesion and took an average score of 0-1. All NPs treated groups showed remarkable improvement in the microscopic pictures along with mild iNOS, TNF-α, and Cox-2 expression. Both nanoparticles could downregulate the m-RNA levels of IL-6 and IFγ and upregulate IL-10 and TGF-1ß genes to promote skin healing. Dressing rabbits with both NPs didn't affect either liver and kidney biomarkers or serum Ig levels indicating their safety. Our residual analysis detected AgNPs in the liver of rabbits but did not detect any residues of GNPs in such organs. We recommend using GNPs as an alternative acaricide to fight rabbit mange.


Subject(s)
Gold , Metal Nanoparticles , Sarcoptes scabiei , Scabies , Silver , Animals , Rabbits , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Gold/chemistry , Scabies/drug therapy , Scabies/parasitology , Silver/chemistry , Sarcoptes scabiei/drug effects , Skin/drug effects , Skin/parasitology , Skin/pathology , Skin/metabolism
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731882

ABSTRACT

In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further insights, we collected skin biopsies before and after pulse-controlled ergometry and sweat after sauna provocation from CholU patients as well as healthy controls. CholU patients displayed partially severely reduced local sweating, yet total sweat volume was unaltered. However, sweat electrolyte composition was altered, with increased K+ concentration in CholU patients. Formalin-fixed, paraffin-embedded biopsies were stained to explore sweat leakage and tight junction protein expression. Dermcidin staining was not found outside the sweat glands. In the secretory coils of sweat glands, the distribution of claudin-3 and -10b as well as occludin was altered, but the zonula occludens-1 location was unchanged. In all, dermcidin and tight junction protein staining suggests an intact barrier with reduced sweat production capability in CholU patients. For future studies, an ex vivo skin model for quantification of sweat secretion was established, in which sweat secretion could be pharmacologically stimulated or blocked. This ex vivo model will be used to further investigate sweat gland function in CholU patients and decipher the underlying pathomechanism(s).


Subject(s)
Sweat Glands , Sweat , Tight Junctions , Humans , Sweat Glands/metabolism , Female , Tight Junctions/metabolism , Male , Sweat/metabolism , Adult , Middle Aged , Urticaria/metabolism , Urticaria/pathology , Sweating , Skin/metabolism , Skin/pathology
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732041

ABSTRACT

Oligomeric alpha-synuclein (α-syn) in saliva and phosphorylated α-syn deposits in the skin have emerged as promising diagnostic biomarkers for Parkinson's disease (PD). This study aimed to assess and compare the diagnostic value of these biomarkers in discriminating between 38 PD patients and 24 healthy subjects (HSs) using easily accessible biological samples. Additionally, the study sought to determine the diagnostic potential of combining these biomarkers and to explore their correlations with clinical features. Salivary oligomeric α-syn levels were quantified using competitive ELISA, while skin biopsies were analyzed through immunofluorescence to detect phosphorylated α-syn at Ser129 (p-S129). Both biomarkers individually were accurate in discriminating PD patients from HSs, with a modest agreement between them. The combined positivity of salivary α-syn oligomers and skin p-S129 aggregates differentiated PD patients from HSs with an excellent discriminative ability with an AUC of 0.9095. The modest agreement observed between salivary and skin biomarkers individually suggests that they may reflect different aspects of PD pathology, thus providing complementary information when combined. This study's results highlight the potential of utilizing a multimodal biomarker approach to enhance diagnostic accuracy in PD.


Subject(s)
Biomarkers , Parkinson Disease , Saliva , Skin , alpha-Synuclein , Humans , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Saliva/metabolism , Biomarkers/metabolism , Male , Female , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Middle Aged , Aged , Skin/metabolism , Skin/pathology , Phosphorylation , Case-Control Studies
7.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732058

ABSTRACT

Monitoring inflammatory cytokines is crucial for assessing healing process and photobiomodulation (PBM) enhances wound healing. Meanwhile, cAMP response element-binding protein (CREB) is a regulator of cellular metabolism and proliferation. This study explored potential links between inflammatory cytokines and the activity of CREB in PBM-treated wounds. A total of 48 seven-week-old male SD rats were divided into four groups (wound location, skin or oral; treatment method, natural healing or PBM treatment). Wounds with a 6 mm diameter round shape were treated five times with an 808 nm laser every other day (total 60 J). The wound area was measured with a caliper and calculated using the elliptical formula. Histological analysis assessed the epidermal regeneration and collagen expression of skin and oral tissue with H&E and Masson's trichrome staining. Pro-inflammatory (TNF-α) and anti-inflammatory (TGF-ß) cytokines were quantified by RT-PCR. The ratio of phosphorylated CREB (p-CREB) to unphosphorylated CREB was identified through Western blot. PBM treatment significantly reduced the size of the wounds on day 3 and day 7, particularly in the skin wound group (p < 0.05 on day 3, p < 0.001 on day 7). The density of collagen expression was significantly higher in the PBM treatment group (in skin wound, p < 0.05 on day 3, p < 0.001 on day 7, and p < 0.05 on day 14; in oral wound, p < 0.01 on day 7). The TGF-ß/TNF-α ratio and the p-CREB/CREB ratio showed a parallel trend during wound healing. Our findings suggested that the CREB has potential as a meaningful marker to track the wound healing process.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Low-Level Light Therapy , Rats, Sprague-Dawley , Wound Healing , Animals , Wound Healing/radiation effects , Low-Level Light Therapy/methods , Male , Rats , Cyclic AMP Response Element-Binding Protein/metabolism , Skin/metabolism , Skin/radiation effects , Skin/pathology , Skin/injuries , Cytokines/metabolism , Phosphorylation/radiation effects , Tumor Necrosis Factor-alpha/metabolism , Collagen/metabolism , Transforming Growth Factor beta/metabolism
8.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734816

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Subject(s)
CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
9.
J Investig Med High Impact Case Rep ; 12: 23247096241253337, 2024.
Article in English | MEDLINE | ID: mdl-38742532

ABSTRACT

Subcutaneous panniculitis-like T-cell lymphoma (SPTLP), a unique variant of primary cutaneous T-cell lymphomas, clinically mimics subcutaneous panniculitis. It is typified by the development of multiple plaques or subcutaneous erythematous nodules, predominantly on the extremities and trunk. Epidemiological findings reveal a greater incidence in females than males, affecting a wide demographic, including pediatric and adult cohorts, with a median onset age of around 30 years. Diagnosis of SPTLP is complex, hinging on skin biopsy analyses and the identification of T-cell lineage-specific immunohistochemical markers. Treatment modalities for SPTLP are varied; while corticosteroids may be beneficial initially for many patients, a substantial number require chemotherapy, especially in cases of poor response or relapse. Generally, SPTLP progresses slowly, yet approximately 20% of cases advance to hemophagocytic lymphohistiocytosis (HLH), often correlating with a negative prognosis. We report a case of a young male patient presenting with prolonged fever, multiple skin lesions accompanied by HLH, a poor clinical course, and eventual death, diagnosed postmortem with SPTLP. In addition, we also present a literature review of the current evidence of some updates related to SPTLP.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Lymphoma, T-Cell , Panniculitis , Humans , Lymphohistiocytosis, Hemophagocytic/pathology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/complications , Male , Panniculitis/pathology , Panniculitis/diagnosis , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/complications , Lymphoma, T-Cell/diagnosis , Fatal Outcome , Adult , Skin Neoplasms/pathology , Skin Neoplasms/complications , Skin/pathology , Biopsy , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/complications , Lymphoma, T-Cell, Cutaneous/diagnosis , Diagnosis, Differential
10.
Adv Exp Med Biol ; 1447: 45-57, 2024.
Article in English | MEDLINE | ID: mdl-38724783

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin condition with heterogeneous presentations and prevalence across different skin tones. In this chapter, AD is explored through the lens of racial and ethnic diversity, emphasizing the special considerations among patients with skin of color (SOC). Specific ethnic groups may exhibit unique AD phenotypes, and these differences pose unique diagnostic and management challenges, especially given the disproportionate impact of AD in African American and Asian populations due to environmental exposures and social factors (i.e., decreased access to healthcare resources). Addressing these social disparities, increasing representation in medical education and the clinical space, as well as ongoing research can help better serve this patient population.


Subject(s)
Dermatitis, Atopic , Skin Pigmentation , Dermatitis, Atopic/ethnology , Humans , Black or African American , Skin/pathology , Healthcare Disparities , Prevalence
11.
Adv Exp Med Biol ; 1447: 21-35, 2024.
Article in English | MEDLINE | ID: mdl-38724781

ABSTRACT

The pathophysiology of atopic dermatitis is complex and multifactorial, involving elements of barrier dysfunction, alterations in cell-mediated immune responses, IgE-mediated hypersensitivity, and environmental factors. Loss-of-function mutations in filaggrin have been implicated in severe atopic dermatitis due to a potential increase in trans-epidermal water loss, pH alterations, and dehydration. Other genetic changes have also been identified, which may alter the skin's barrier function, resulting in an atopic dermatitis phenotype. The imbalance of Th2 to Th1 cytokines observed in atopic dermatitis can create alterations in the cell-mediated immune responses and can promote IgE-mediated hypersensitivity, both of which appear to play a role in the development of atopic dermatitis. One must additionally take into consideration the role of the environment on the causation of atopic dermatitis and the impact of chemicals such as airborne formaldehyde, harsh detergents, fragrances, and preservatives. Use of harsh alkaline detergents in skin care products may also unfavorably alter the skin's pH causing downstream changes in enzyme activity and triggering inflammation. Environmental pollutants can trigger responses from both the innate and adaptive immune pathways. This chapter will discuss the multifaceted etiology of atopic dermatitis, which will help us to elucidate potential therapeutic targets. We will also review existing treatment options and their interaction with the complex inflammatory and molecular triggers of atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Filaggrin Proteins , Dermatitis, Atopic/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/physiopathology , Humans , Skin/pathology , Skin/immunology , Animals , Cytokines/metabolism , Immunoglobulin E/immunology , Environmental Exposure/adverse effects
12.
Adv Exp Med Biol ; 1447: 37-44, 2024.
Article in English | MEDLINE | ID: mdl-38724782

ABSTRACT

Atopic dermatitis, commonly known as eczema, is a chronic inflammatory dermatosis that can affect individuals from infancy to adulthood. Also referred to as "the itch that rashes," atopic dermatitis is classically associated with significant pruritus that is accompanied by characteristic cutaneous and other clinical findings. The diagnosis of atopic dermatitis can be challenging due to the wide range of clinical presentations based on patient factors such as age, skin type, ethnicity, and other comorbid conditions. This chapter reviews the classical findings as well as the less common manifestations of atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/pathology , Humans , Pruritus/etiology , Pruritus/diagnosis , Skin/pathology , Infant
13.
Adv Exp Med Biol ; 1447: 117-129, 2024.
Article in English | MEDLINE | ID: mdl-38724789

ABSTRACT

With recent advances in topical therapies for atopic dermatitis (AD), steroid-sparing options like calcineurin inhibitors, Janus kinase (JAK) inhibitors, and phosphodiesterase-4 (PDE-4) inhibitors are becoming mainstays in therapy, underscoring the importance of careful selection and usage of topical corticosteroids (TCSs) to minimize side effects. Alongside the necessity of emollient use, these steroid-sparing alternatives offer rapid itch relief and efficacy in improving disease severity. While TCSs still hold a prominent role in AD management, promising novel topical treatments like tapinarof and live biotherapeutics to modulate the skin microbiome are also discussed. Overall, the recent addition of novel topical therapies offers diverse options for AD management and underscores the importance of topical treatments in the management of AD.


Subject(s)
Dermatitis, Atopic , Humans , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/microbiology , Administration, Topical , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Phosphodiesterase 4 Inhibitors/therapeutic use , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Skin/pathology , Calcineurin Inhibitors/therapeutic use , Calcineurin Inhibitors/administration & dosage , Dermatologic Agents/therapeutic use , Dermatologic Agents/administration & dosage , Dermatologic Agents/adverse effects
15.
PLoS One ; 19(5): e0302991, 2024.
Article in English | MEDLINE | ID: mdl-38722855

ABSTRACT

Recessive dystrophic epidermolysis bullosa is a rare genodermatosis caused by a mutation of the Col7a1 gene. The Col7a1 gene codes for collagen type VII protein, a major component of anchoring fibrils. Mutations of the Col7a1 gene can cause aberrant collagen type VII formation, causing an associated lack or absence of anchoring fibrils. This presents clinically as chronic blistering, scarring, and fibrosis, often leading to the development of cutaneous squamous cell carcinoma. Patients also experience persistent pain and pruritus. Pain management and supportive bandaging remain the primary treatment options. The pathology of recessive dystrophic epidermolysis bullosa was first described in the 1980s, and there has since been a multitude of encouraging treatment options developed. However, in vivo research has been hindered by inadequate models of the disease. The various mouse models in existence possess longevity and surface area constraints, or do not adequately model a normal human disease state. In this paper, we describe a novel rat model of recessive dystrophic epidermolysis bullosa that offers an alternative to previous murine models. An 8-base pair deletion was induced in the Col7a1 gene of Lewis rats, which was subsequently found to cause a premature stop codon downstream. Homozygous mutants presented with a fragile and chronically blistered phenotype postnatally. Further histological analysis revealed subepidermal clefting and the absence of anchoring fibrils. The generation of this novel model offers researchers an easily maintained organism that possesses a larger surface area for experimental topical and transfused therapies to be tested, which may provide great utility in the future study of this debilitating disease.


Subject(s)
Collagen Type VII , Disease Models, Animal , Epidermolysis Bullosa Dystrophica , Frameshift Mutation , Phenotype , Collagen Type VII/genetics , Animals , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/pathology , Rats , Genes, Recessive , Rats, Inbred Lew , Blister/genetics , Blister/pathology , Skin/pathology , Male
16.
Front Immunol ; 15: 1343987, 2024.
Article in English | MEDLINE | ID: mdl-38690268

ABSTRACT

Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.


Subject(s)
Autoimmune Diseases , Autophagy , Skin Diseases , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Skin Diseases/immunology , Animals , Skin/immunology , Skin/pathology , Skin/metabolism , Homeostasis/immunology
17.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734619

ABSTRACT

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Subject(s)
Hydroquinones , Lipidomics , Melanosis , Quality of Life , Humans , Melanosis/drug therapy , Female , Adult , Hydroquinones/therapeutic use , Hydroquinones/administration & dosage , Tranexamic Acid/therapeutic use , Middle Aged , Melanins/metabolism , Male , Lipids/blood , Lipids/analysis , Epidermis/metabolism , Epidermis/drug effects , Epidermis/pathology , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Lipid Metabolism/drug effects
18.
BMC Immunol ; 25(1): 30, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734636

ABSTRACT

BACKGROUND: Immune-mediated necrotizing myopathy (IMNM) is an idiopathic inflammatory myopathy (IIM). Though patients with IMNM were not considered to show skin rash, several reports have showed atypical skin conditions in patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibody-positive IMNM (HMGCR-IMNM). The incidence and phenotype of skin conditions in patients with HMGCR-IMNM are not fully known. RESULTS: Among the 100 IIM patients diagnosed from April 2015 through August 2022, 34 (34%) presented some form of skin condition, with 27 having typical skin rashes; this included 13 patients with dermatomyositis (DM), 8 with anti-synthetase syndrome (ASS), and 6 with IMNM. Meanwhile, 8 of 19 patients with HMGCR-IMNM (42%) presented atypical skin lesions, but no patients with other IIMs did (p < 0.001). Skin eruption with ash-like scales was observed in four HMGCR-IMNM patients, and non-scaly red patches and lumps in the other four patients; accordingly, their skin manifestations were considered as other dermal diseases except for IIM. However, skin and muscle biopsies revealed the atypical skin conditions of patients with HMGCR-IMNM to have the same pathological background, formed by Bcl-2-positive lymphocyte infiltrations. CONCLUSIONS: HMGCR-IMNM patients frequently have atypical skin conditions of the neck and back. Skin biopsy specimens from these lesions showed the same Bcl-2-positive lymphocytic infiltrations as muscle biopsy specimens regardless of the different gross dermal findings. Thus, such atypical skin conditions may be suggestive for HMGCR-IMNM.


Subject(s)
Autoantibodies , Hydroxymethylglutaryl CoA Reductases , Myositis , Skin , Humans , Hydroxymethylglutaryl CoA Reductases/immunology , Female , Male , Middle Aged , Autoantibodies/immunology , Autoantibodies/blood , Adult , Skin/pathology , Skin/immunology , Myositis/immunology , Myositis/diagnosis , Aged , Skin Diseases/immunology , Skin Diseases/etiology , Muscular Diseases/immunology , Muscular Diseases/diagnosis , Biopsy
19.
Tidsskr Nor Laegeforen ; 144(6)2024 May 14.
Article in Norwegian | MEDLINE | ID: mdl-38747665
SELECTION OF CITATIONS
SEARCH DETAIL
...